Educational Blog: Insertion Sort Algorithm

Sunday, 22 February 2015

Insertion Sort Algorithm

#include<stdio.h> 
#include<conio.h> 
 
   void insertion(int a[],int n) 
   { 
            int i,j,x,k; 
 
             for(i=1;i<=n-1;i++) 
          { 
                j=i; 
                x=a[i]; 
               while(a[j-1]>x && j>0) 
               { 
                      a[j]=a[j-1]; 
                      j=j-1; 
               } 
               a[j]=x;
          }
 
    } 
  
    void main() 
    { 
                  int a[100],n,i; 
                  clrscr(); 
           
                  printf("\n\nEnter an integer value for total no.s of elements to be sorted: "); 
                  scanf("%d",&n); 
  
                   for(i=0;i<=n-1;i++) 
                   { 
                         printf("\n\nEnter an integer value for element no.%d: ",i+1); 
                         scanf("%d",&a[i]); 
                    } 
    
                    insertion(a,n); 
    
                    printf("\n\n\nFinally sorted array is : "); 
                   
                    for(i=0;i<=n-1;i++)
                   {
                        printf("%4d",a[i]); 
                   }
    }




Best-Case


The best case occurs if the array is already sorted. For each j = 2, 3, ..., n, we find that A[i] less than or equal to the key when i has its initial value of (j − 1). In other words, when i = j −1, always find the key A[i] upon the first time the WHILE loop is run.
Therefore, tj = 1 for j = 2, 3, ..., n and the best-case running time can be computed using equation (1) as follows:

T(n) = c1n + c2 (n − 1) + c4 (n − 1) + c5 ∑2 ≤ j n (1) + c62 ≤ j n (1 − 1) + c72 ≤ j n (1 − 1) + c8 (n − 1)

T(n) = c1n + c2 (n − 1) + c4 (n − 1) + c5 (n − 1) + c8 (n − 1)

T(n) = (c1 + c2 + c4  + c5  + c8 ) n + (c2  + c4  + c5  + c8)

This running time can be expressed as an + b for constants a and b that depend on the statement costs ci. Therefore, T(n) it is a linear function of n.

The punch line here is that the while-loop in line 5 executed only once for each j. This happens if given array A is already sorted.

T(n) = an + b = O(n)


It is a linear function of n.


Worst-Case


The worst-case occurs if the array is sorted in reverse order i.e., in decreasing order. In the reverse order, we always find that A[i] is greater than the key in the while-loop test. So, we must compare each element A[j] with each element in the entire sorted subarray A[1 .. j − 1] and so tj = j for j = 2, 3, ..., n. Equivalently, we can say that since the while-loop exits because i reaches to 0, there is one additional test after (j − 1) tests. Therefore, tj = j for j = 2, 3, ..., n and the worst-case running time can be computed using equation (1) as follows:

T(n) = c1n + c2 (n − 1) + c4  (n − 1) + c5 ∑2 ≤ j n ( j ) + c62 ≤ j n(j − 1) + c72 ≤ j n(j − 1) + c8 (n − 1)

And using the summations in CLRS on page 27, we have

T(n) = c1n + c2 (n − 1) + c4  (n − 1) + c5 ∑2 ≤ j n [n(n +1)/2 + 1] + c62 ≤ j n [n(n − 1)/2] + c72 ≤ j n [n(n − 1)/2] + c8 (n − 1)

T(n) = (c5/2 + c6/2 + c7/2) n2 + (c1 + c2 + c4 + c5/2 − c6/2 − c7/2 + c8) n − (c2 + c4 + c5 + c8)

This running time can be expressed as (an2 + bn + c) for constants a, b, and c that again depend on the statement costs ci. Therefore, T(n) is a quadratic function of n.

Here the punch line is that the worst-case occurs, when line 5 executed j times for each j. This can happens if array A starts out in reverse order

T(n) = an2 + bn + c = O(n2)


Average Case


On average, the key in A[j] is less than half the elements in A[1 .. j 1] and it is greater than the other half. It implies that on average, the while loop has to look halfway through the sorted subarray A[1 .. j1] to decide where to drop key. This means that tj  = j/2.

Although the average-case running time is approximately half of the worst-case running time, it is still a quadratic function of n.

No comments:

Post a Comment